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A solid long slender body is considered placed in a fluid undergoing a given 
undisturbed flow. Under conditions in which fluid inertia is negligible, the force 
per unit length on the body is obtained as an asymptotic expansion in terms of the 
ratio of the cross-sectional radius to body length. Specific examples are given for 
the resistance to translation of long slender bodies for cases in which the body 
centre-line is curved as well as for those for which the centre-line is straight. 

1. Introduction 
There are only relatively few problems in which it is possible to solve exactly 

the creeping motion equations for flow around a single isolated solid body. Thus 
Stokes (1851) calculated the flow around a solid sphere undergoing uniform 
translation through a viscous fluid whilst Oberbeck (1876) considered the 
analogous problem for the spheroid and Payne & Pel1 (1960) obtained general 
solutions for the case of axisymmetric flow relative to lens-shaped bodies. Brenner 
(1 964) obtained the flow around a solid body whose shape was that of a slightly 
deformed sphere, the velocity field being obtained as an expansion in terms of the 
deformation. 

Since many particles encountered in practice are of irregular shape, it is of 
interest to investigate the flow around a class of bodies of irregular shape for 
which one may solve the creeping motion equations. In  this paper, we therefore 
consider the flow around a long slender solid body which may or may not be 
straight. If such a body is of length 1 and has a cross-sectional radius of order b, 
an expansion of the velocity field about such zt body is made in terms of the 
parameter K = b/l. Such a body is a suitable model for a fibre or thread-like 
particle which may be either rigid or flexible. The behaviour of such a kind of 
flexible fibre in shear flow was investigated experimentally by Forgacs & Mason 
(1959a, b ) .  

The general theory of long slender bodies described in this paper will be used 
to find the hydrodynamic forces exerted on such a particle when it is placed in a 
general undisturbed flow fleld. It is also shown how the theory may be modified 
to investigate (i) the mutual interaction between two or more long slender bodies 
and (ii) the behaviour of a long slender body in the neighbourhood of solid walls. 

In the final section ( $  S), there are brief descriptions of how the general theory 
may be employed in a number of particular problems of interest. 
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2. Translational resistance of long slender bodies 
Several results pertaining to the uniform translational motion of long slender 

bodies are now discussed. Consider a body with surface S at rest in il fluid which 
at  infinity is undergoing a uniform translational motion with velocity U. Then if 
fluid inertia effects are neglected, the velocity v and pressure p in the fluid satisfy 
the creeping motion equations 

/LV%l-Vp = 0, v.u  = 0, (2.1) 

with the boundary conditions 
u =  0 on S, 

u + U  as r-tco, 
p being the fluid viscosity and r the position vector of a general point. Oberbeck 
(1876) solved this problem in the particular case of an ellipsoid and obtained 
the force F exerted on such a body. In  particular for a spheroid with semi-axes a 
and b with a measured along the symmetry axis, Oberbeck’s formula for U in the 
direction of the symmetry axis leads to a value for the force F (also along the 
symmetry axis) of magnitude 

which for large axis ratios (i.e. for small b/a), reduces to 

as @/a)  + 0. 

Burgers (1938) attempted to obtain the formula (2.4) directly for a long slender 
ellipsoid of revolution. He assumed that the disturbance produced by the 
ellipsoid was like that which would be produced by a line of force of magnitude 

f (z )  = A,,+ A,(z/a),+ A , ( z / ~ ) ~  if IzI < a, 

f ( z )  = 0 otherwise, (2.5) I 
acting along the symmetry axis, z being distance measured along the symmetry 
axis from the centre of the ellipsoid and A,,, A,,  A ,  being constants. Burgers then 
evaluated the complete velocity field u consisting of the uniform flow U and the 
disturbance produced by the line of force and then found the values of A,,, A ,  and 
A ,  which minimized the mean value of I u I on the surface of the body (upon which 
one would like to satisfy u = 0). This procedure yielded the value of the force on 

the ellipsoid as 47rpa U 

which is exactly the same as the equation (2.4) obtained from Oberbeck’s results. 
Burgers also used his method to determine the force on a circular cylinder of 
finite length which was held at rest in a uniform stream flowing in the direction of 
the symmetry axis. For this case, he obtained the value of the force as 

p=-- (2-6) In (2a/b) - 0.5 ’ 

4npa U 
ln(2a/b)-O-72’ 

F =  

where a is the semi-length and b the radius of the cylinder. 
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Broersma ( 1  960) improved the method used by Burgers by taking the distur- 
bance produced by the body as being that produced by a line of force of magnitude 

(2.8) I f ( x )  = B , , + B , ( z / ~ ) ~ + B , ( ~ / ~ ) ~ +  ... if ( z (  < a, 

= o  otherwise, 

where B,, B,, B,, . . . are an infinite set of constants to  be determined. If one now 
evaluates u and minimizes the mean value of IuI on the surface of the body one 
obtains an infinite set of linear equations for B,, B,, B,, . . . . Broersma computed 
the values of these constants numerically for the case of a circular cylinder of 
finite length with U in the direction of the symmetry axis and obtained for the 
force on the cylinder 4npa U 

In(2alb) - 0.81 ' F =  (2.9) 

which differs from the result (2.7) obtained by Burgers. It may therefore be con- 
cluded that the method used by Burgers is not asymptotically correct in the limit 
of bla --f 0 to the order considered. However, it  isnot obvious whether Broersma's 
method gives an asymptotically correct solution to the order given in (2.9) and if 
correct, what the next term in the expansion might be. 

In  the present paper, this point is clarified since we shall find the force on a long 
slender body as an asymptotic expansion in terms of the ratio of body cross- 
section to body length. 

Tuck (1964) has investigated the translational resistance force on slender 
bodies by the use of spheroidal co-ordinates while recently Tillett (1970) and 
Batchelor (1970) have used a method similar to that described in this paper to 
find respectively the hydrodynamic resistance of slender bodies of revolution and 
straight slender bodies of non-circular moss-section. 

3. General problem 
Consider a long slender body S of circular cross-section, the length of the body 

being 1 and a characteristic value of the cross-sectional radius being b. This body 
may be assumed bent in any manner whatsoever so long as the radius of curvature 
of such a bending is at  all points of order 1. The distance along the body centre-line 
measured from one end is s' (see figure 1) and a. dimensionless quantity s is given by 

s = 8'11 (3.1) 

so that 0 6 s 6 1, the two ends of the body S being s = 0 and s = 1. The cross- 
sectional radius at any point of the centre-line is taken to be bh(s), where h(s) is a 
dimensionless function of s. 

Dimensionless quantities will be used (unless otherwise stated) based upon the 
length 1, the fluid viscosityp and a characteristic velocity U .  The vector r is now 
defined as the dimensionless position of a general point relative to a fixed set of 
rectangular Cartesian co-ordinates with origin 0. The body Xis considered placed 
in an undisturbed flow field with dimensionless value U(r), this flow field itself 
satisfying the creeping motion equations, i.e. 

v2u-VP = 0, v.u = 0, (3.2) 
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P being a dimensionless pressure field. It is assumed also that the velocity of 
material points on the centre-line of the body is given by a function U*(s) and 
that the centre-line itself is given by r = R(s). 

The complete velocity field (i.e. the flow field U together with the disturbance 
flow produced by X) is defined as u, this flow field also satisfying the creeping 
motion equations 

p being the pressure field corresponding to u. 
(3.3) v2u-vp = 0, v.u = 0, 

FIGURE 1. Long slender body moving in a fluid undergoing 
an undisturbed flow Up). 

The parameter K is defined by 
K = b/l (3.4) 

and is assumed to be very small compared with unity. It is in terms of this para- 
meter that we shall make expansions of the velocity field. However, one should 
note that this type of expansion must be singular since the flow locally around the 
long thin body must be very nearly a flow around an infinite circular cylinder 
and it is well known (Stokes paradox) that it is impossible for a flow field (u,p) to 
satisfy the creeping motion equations and at the same time to satisfy the no slip 
condition u = 0 on an inJinite circular cylinder and also to make u tend to  a 
uniform flow at infinity. 

Using dimensionless variables, one therefore defines an outer expansion in K for 
which r is used as the independent variable and u and p as dependent variables. 
At each point P (at r = RP) of the centre-line of the body X one may define an 
inner expansion in K for which E is used as the independent variable and fi and 
as dependent variables where E, ij and are given by 

(3.5) 
- E = (r-Rp)/K, 5 = u, p = ~ p .  
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In  the outer expansion, I is the unit of length and as K -+ 0 ,  the body S becomes 
a line singularity (i.e. b -+ 0) ,  whereas in the inner expansion at each point P of 
the centre-line, the unit of length is b and as K -+ 0, the body S becomes very 
much like a cylinder of infinite length (since E -+ co). Actually one has an infinite 
number of inner expansions corresponding to each point of the centre-line of 
the body S.  However, all such inner expansions may be considered simultaneously 
by taking a general point P of the body centre-line. The inner expansion at  such 
a point is then matched onto the solution for the outer expansion a t  the same 
point P. 

4. Inner expansion 
At a general point P of the centre-line of the body S,  consider the inner 

expansion. By expressing the creeping motion equations (3.3) in terms of the 
inner variables, one obtains 

- - 

V 2 i i - Q  = 0, v.a = 0, (4.1) 

'I 

FIGURE 2. Cylindrical co-ordinate system ( F ,  8, Z). 

where all derivatives are with respect to the F variables. These equations are to be 
solved with the no slip boundary condition that 

Locally a set of rectangular Cartesian axes (PI, T z ,  T 3 )  are taken in such a manner 
that the F, axis lies in the direction of the tangent to the centre-line at P and 
relative to these axes, a cylindrical polar system of axes ( p ,  B , Z )  is considered 
(see figure 2) such that 

If  s p  is the value of s at  the point P, the surface of the body X in the neighbourhood 
of P may be expressed in the form 

ii = U*(s) on the surface of the body. (4.2) 

F1 = 2, F 2  = pcos8, T, = psino. (4.3) 

p = A(+) + O ( S  - sp), 
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h(s) being defined in S 3. Now since (s - sp) is approximately equal to KZ it  follows 
that the surface of the body S may be written as 

p = h(s) + O ( K ) .  

The inner bounday condition on ii is therefore 

ii = U*(s) on p = h(s) + O ( K ) .  (4.4) 

If one writes 5 = Go + O ( K ) ,  F = go + O ( K ) ,  (4.5) 

- 
then (ii,,, Po)  must satisfy 

- 

v2iio-vyo = 0,  v.iio = 0, 

with ii, = U*(s) on p = A(s). 

No outer boundary condition will be imposed on ii, a t  this stage since such a 
boundary condition is determined by the required matching onto the outer 
expansion. The general solution of equations (4.6) with boundary conditions (4.7) 
may be written as 

(u0)? = C ( K )  (1 - h2p-2- 2 In (p /A) )  cos O + (U*), cos 8 

= C ( K ) { ~  -h2p-2+2ln(p/h))sin8- (U*)ssinB 
+ D ( K )  (1 - - 2 In @/A)} sin 6 + ( U*),  sin 8, 

+ D(K)  { - 1 + h2p-2 - 2 In @ / A ) }  cos 8 + (U*) ,  cos 8, 

(uO)z = E ( K )  Ln @/A)  + (u*)i, 
F~ = C(K)  (4p-l cos O }  + D ( K )  {4p-l sin 0}+ F(K),  

where C ( K ) ,  D(K) ,  E(K)  and F(K)  are arbitrary constants which may be taken as 
functions of K .  The expression in (4.8) for (Uo,j30) should also contain terms in 
cos n8 and sin no with n 2 2 .  However these have been omitted since it may be 
shown that if they are included their coefficients must be zero to the order in 
K which is considered (otherwise they would give rise to terms like K - ~  in the outer 
expansion with n > 0) .  For the quantities C ( K ) ,  D ( K ) ,  E(K) and F ( K )  one must 
choose a suitable expansion in terms of the parameter K .  A careful examination of 
equations (4.8) leads one to the conclusion that these expansions for C(K),  D ( K ) ,  
E ( K )  and $ ( K )  'must be of the form 

+ ... , 1nK (lnK)2 

+ ..., D ( K )  = A+- 
1nK (lnK)2 

-I- ..., E ( K )  = ~ + - 
1nK ( l n ~ ) ~  

Cl c2 

D D2 

El E2 

C(K) = -+- 

F ( K )  = KF0+- - .  K F l  

1nK 

(4.9) 

The substitution of C(K),  D ( K )  and E(K) from (4.9) into the expressions (4.8) for 
(Go, Po)  and the changing of the resulting equations to outer variables yields the 
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inner boundary condition on the flow field (u,p) of the outer expansion. Using 
(p, 8, z )  polar axes, corresponding to the ( p ,  8,X) axes so that 

the inner boundary conditions on the outer flow field ( u , p )  may be written as 

p = ~p and z = KZ, (4.10) 

\ up N { ( 2 ~ , +  ~ z * ) c o s 8 + ( 2 ~ , + ~ ~ ) s i n ~ }  

1 
In K 

+ - {( 2C2 + C, - 2C, In (plh)) cos 0 

+ (20, + 0, - 2 0 ,  In (plh)) sin S} + . . . , 
ug N { ( - 2 ~ , - ~ ~ ) s i n ~ + ( 2 0 , + ~ g ) c o s 0 }  * 

1 
I n K  

+- {( - 2C2 +Cl + 2C11n ( p l h ) )  sin 8 

+ ( 2 0 ,  - 0, - 2 0 ,  In ( p l h ) )  cos O}  + . . . , 
U ,  N ( - El + Ui ) +-- ( -E,+E,ln @/A)) + ..., * 1  

111 K 

(4.11) 

4p-1 (c, cos 0 + 0, sin S) + p0 + 
P - G G  

in the limit of p --+ 0 (i.e. ( u , p )  has this form for a point r which moves in towards 
the line singularity r = R(s) a t  the point P). 

5. Outer expansion 
The outer flow field (u, p )  satisfies the creeping motion equations 

v2u-vp = 0, v.u = 0 (5.1) 
and would take the value u = U(r) if the body X were absent. Thus from the 
inner boundary condition (4.11) on (u,p) it  would seem reasonable that one 
would be able to expand (u ,p)  in the form 

Ul 

P1 

In lnK K I u = U(r)+-+ ..., 

p = P(r)+-+ .... 

A t  a point P on the line singularity r = R(s), it is convenient to take a set of 
rectangular Cartesian axes with unit base vectors ii, is and is which lie in the same 
directions as the 1 , 2 , 3  axes in the inner expansion a t  P (see 3 4). Thus ii lies in the 
direction of the tangent to r = R(s) at  P. Since the 2 and 3 axes were arbitrary 
one may now, for convenience, take i z  to lie in the plane containing ii and the 
velocity U(r) - U*(s) evaluated at  P (see figure 3). Thus the unit vectors ii, is and 
is may be written in the form 

- _ _  

ii  = dR/ds, 

(5.3) 
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where all quantities are evaluated a t  the point P considered, I being the 
idemfactor. 

The term in equation (5.2) of order unity (i.e. the flow field (U, P ) )  must behave 
near the line r = R(s) like the term of order unity in equation (4.11). Hence on 
r = R(s) 

Ui(r) = - E~ + u ~ ( s ) ,  

U,(r) = + 2c1 + u,*(s), 
U,(r) = + Z D ~  + u$(s), 

and P(r) = Fo. 

(5.4) 

FIGURE 3. System of axes with unit base vectors ii, i,, is. 

Therefore the values of Cl, D,, El and Fo are given by 

(5.5) 

all quantities being evaluated on r = R(s). From the definitions of the set of axes, 
1, 2, 3 given by (5.3), it is seen that 
- - -  

C1 = a{lU(R) - U*(s)l2 - I{U(R) - U*(S)}. dR/dsJ2)t, 

Dl= 0, 

El = - {U(R) - U*(S)). d R / d s ,  
Fo = P(R). 
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Consider now the matching of terms of order (l/lnK) in (5.2). It is seen that the 
flow field (u,, p , )  near the line r = R(s) must behave like the term of order ( 1  /ln K )  

in (4.1 1 ) .  Hence asp  + 0, 

( u ~ ) ~  - ( - ZC, cos 0) lnp + {(ZC, + C, + 2C11nA) cos 0 + (20,) sin 8) + .. ., 
( u , ) ~  N (+ 2C1sin B ) l n p +  (( - 2C,+C,- 2C,lnA) sin0+ (20,) cos8) + ..., 
(uJZ N + E1hp  + ( - E, - Elln A) ,  (5.7) 1 N 4p-l(C1 COB @) + F1, 

where use has been made of the result 0, = 0 (see (5.6)). The singular part of 
(ul,pl) given by (5.7), (i.e. the terms of order lnp for u, and of order p-l for p , )  
represents a line of force on r = R(s) of magnitude S * ( s )  given by 

(5.8) F*(s) = ( SnC,) i 2  - (%El) ii  

which by equations (5.3) and (5.6) may be written as 

(5.9) 

Now the flow field (ul,pl) due to this line of force is given by 

(5.10b) 

A 

where the integration is taken over the line 0 6 3 6 1 and R represents the value 
of r at a point s = 3 on the line of force. The substitution of the value of 9* from 
(5.9) into the expressions (5.10) for (u,, p , )  yields 

(5.11) 

I17 order to compare this value of (ul,pl) with equation (5.7), one requires to 
obtain the behaviour of (ul,pl) given by (5.11) near the line of singularity 
r = R(s). Since u1 and p ,  both become infinite on this line one writes 

(5.12) 

where Ji and K are the integrals in (5.11) taken over the intervals (0, S-E) and 
(S+E, l),  whilst J: and K* are the integrals taken over the remaining interval 
(s - E ,  s + E ) .  The quantity e > 0 is assumed to be arbitrary and very much smaller 
than unity. Since the integrands in (5.11) only become singular at  3 = s if r lies 
on the line singularity, it  follows that the integrals Ji and K have integrands with 
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no singularity, although the values of these integrals will tend to infinity as 
e -+ 0. Now if e < 1, the integrals JZ and K* may be simplified if one notes that 
s _N B in the range of integration. Therefore 

(5.13) 
If e < 1, the integrals in (5.13) are readily evaluated to give for 

the values 11% = - 4 Inp + 4 h e  + 4 In 2 - 2 + O( l ) ,  
15% = - 2 l np  + 2 111 e + 2 I n  2 + 2 cos2 8 + o( I ) ,  

I-- 23 - - I-- 32 - - 2sine cosO+o(l), 

s + c ( T j  - n .) 

I33 = - 2 In p + 2 ln e + 2 In 2 + 2 sin2 0 + o( 1 ), 

Iij = 41) for all other i,j as p -+ 0. 
A 

Also for 

one has in the limit of p -+ 0 (and E 6 1) 

I j  = j --+ ds 
S--E lr-KI3 

(5.14) 

(5.15) 

(5.1 6) 

(5.17) 

the values of Iij and Ii being takenrelative to the f, 2,3 set of axes. By substituting 
these values of the integrals Iij and 1;. into the expressions (5.13) and also noting 
that relative to the 1,2,  3 set of axes 

dR,/ds = Sj1 and (Us- Us  ) = 0, 

IT = O( I), 

13 = +2p-1cos0+0(1), 

Is = +Zp-lsinB+o(I), 

- _ -  

* 

it  is seen that the value of (ul,pl) for p --f 0 may by (5.12) be written as 

(5.18) 1 
* 
* 
* 

(u1)i - (Ui- U,)( - Inp+Ine+In2-~)+J i ,  

(u , )~ - ( U ~ - ~ ~ , - ) ( - h p + l n e + l n 2 + ~ o s ~ O ) + J ~ ,  

(u,)g - (Uz-  Uz)sin0 cosO+Js, 

p1 - (Uz-  U ; ) ~ ~ - ~ C O S B + K .  

Thus in terms of the polar co-ordinates (p, 8, z), the velocity field (ul,pl) behaves 

(5.19) 
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Comparing these equations with the asymptotic form of (u , ,p , )  near r = R(s) 
given by (5.7), it is observed that the terms in u1 of order lnp and the term inp, 
of order p-l are equal (as they must be since solutions have already been matched 
to this order). Equating terms in u1 of order po and making use of the values of 
C1, D, and El given by equation (5.5) one obtains the values of the constants 
C,, D,, and E, as 

C, = +(Us-  UB)(g+ln2--In+ln€)+4J~, 

(5.20) I D, = ~Js ,  

E, = (Ui- U i )  (g -In 2 +In h -In a )  - Ji. * 

Thus combining equations (4.9), (5.5) and (5.21), the values of C(K),  D(K) and 
E(K) are obtained as 

* 

(5.21) 

C(K) = (In K)-I +(Us - Uz ) 

D(Kj = (1nK)-,4J3, 

E ( K )  = - ( l n ~ ) - l ( U ~ -  Ui) 

+ (In K)- ,  {i( Us - U:) (4 +In 2 -In h + In c) + +Jz} + . . . , 

* 
* +(lnK)-2{(Ui- U i ) ( + - I n 2 + 1 n h - h ~ ) -  Ji)+ .... 

6. Force on body 
Prom the value of the inner velocity field given by equations (4.8), the force 

per unit length 9 exerted by the fluid on the body may be evaluated. Relative to 
the 7, 2, 3 set of axes this quantity 9 may therefore be shown to have the 
components (2nE(~) ,  - STC(K), - 8 n D ( ~ ) )  SO that one may write 

(6.1) 

Substituting the values of C(K) ,  D(K) and E(K)  from equations (5.21) and by 
making use of the definitions of the unit vectors ii, is, i, (see equation (5.3)), one 
may put (6.1) in the form 

9 / 2 n  = E(K) ii - ~ C ( K )  iz - ~ D ( K )  is. 

(U-U*) J+(U-U*)ln(2e/h)] Y d R  --- 21] 
(In K ) ~  as as  + [ h l K  

s / 2 n  = 

L(U-U*) [ 22 
+ z  (In K ) ,  ] ((ln'K,.)' (6.2) 

. 3---21 +o- 

where J Is, by definition, a vector given by 

where R is the value of r at  the point on the centre-line under consideration and 
R is the value of r at the point on the centre-line with s = 8. Since the above 
equations (6.2) and (6.3) for the hydrodynamic force per unit length acting on the 

51 F L M  44 
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body are of vectorial form, one may consider them relative to any rectangular 
Cartesian co-ordinate system which one may choose. The value of e appearing in 
equations (6.2) and (6.3) is arbitrary, satisfying only the inequality 0 < e < 1. 
However it may be shown that a t  E + 0, the value of J given by (6.3) is of the 

(6.4) 
form J - - { U(R) - U*(s)) In e + O( 1 ), 

so that when this value of J is substituted into (6.2), the resulting expression is 
finite and independent of E in the limit of e + 0. Thus the final expression for the 
force per unit length acting on S is independent of 6. The total force F and 
torque G acting on the body S relative to any origin is given by 

I 1 

0 
F = / F ( s ) d s ,  

G = IO1 R(s) x S ( s )  d s j  

where R(s) is the vector from the origin to the position s on the body centre-line. 
From the general theory it is seen that (6.2) is valid at all points along the body 

only if the cross-sectional radius of the body is a continuous function of length 
along the centre-line, i.e. one requires h(s) to have the properties 

(i)h(s) is continuous for 0 < s < 1, 

(ii) h(0) = h(1) = 0. (6.6) I 
However if h(s) satisfies instead only the properties 

] (6.7) 
(iii) h(s) is piecewise continuous in 0 < s < 1, 

(iv) h(s) has a finite number of discontinuities in 0 < s < 1, 

then one would expect the equation (6.2) to be valid except for intervals in s 
around each point of discontinuity, these intervals each having a width of 
order K .  However, the quantity J appearing in (6.2) if evaluated by the use of the 
integral (6.3) would then possess an error of order K since the integrand in (6.3) 
is valid only outside of intervals of width K (in sh) around each point of disconti- 
nuity of h(5). Thus to the order considered the equation (6.2) with J given by (6.3) 
gives the force per unit length acting on the body except within the intervals of 
width K about each discontinuity in hfs). Therefore the total force and torque 
acting on the body are given by equations (6.5) to the order in K considered. 

The theory given in §$3,  4 and 5 may be easily modified to include the case of 
(i) the interaction of two long slender bodies placed in an undisturbed flow U(r) 
and (ii) the interaction of a single long slender body placed in an undisturbed 
flow U(r), there being some solid walls W present. The results for these two cases 
are given below. However, their derivation will not be given since they may 
readily be deduced by repeating, for these cases, the general theory. 

(i) Interaction of two bodies 
Consider two long slender bodies S and S’ of lengths I and 1’ respectively placed 
in a fluid undergoing an undisturbed flow U(r). Use I as unit of length in 



Long sZender bodies in a viscous Jtuid. Part I 803 

dimensionless system and define distances along the body centre-line by the 
quantities s and s’ so that 

Then the force S per unit length acting on the body S a t  a point r = R(s) is 
given by the equation (6.2) with the vector J given by 

0 < s < 1,  0 < 8‘ < (Z’/Z). 

+ (Ri- [ R- R;) (Rj-  R‘F- R;) {Uk(R’) - U;(s’)}ds’, 

(6.8) 

where R is the value of r at the point s = s’ on the centre-line of the body S‘, 
U*(s’) being the velocity of the material of the body S’ at  such a point. One may 
write down an expression for the force per unit length acting on S’ by inter- 
changing the roles played by S and S’. In a similar manner one may write down 
the force on any long slender body S in the presence of any (finite) number of 
other long slender bodies. 

(ii) Interaction of body with wall 

Consider a single long slender body S placed in a fluid undergoing an undisturbed 
flow U(r) in the presence of a system of walls W .  Then the flow U(r) itself must 
be zero on all such walls. Then the force 9 per unit length acting on S is given by 
(6.2) with the vector J now given by the expression 

A 

where fij(R, R) is the Greens function for creeping motion flow in the presence 
of the walls W ,  i.e. f i j (r ,  9) is defined by the equations 

f i j ,  7c7c - gj, i + JijS(r - @) = 091 

fij,i = 0,J’ 
with the boundary condition 

f i j  = 0 on W ,  

(6.10) 

(6.11) 

gj being the pressure field corresponding to fij and 6(r-@) the Dirac delta 
function. 

Similarly by replacing the terms 

in (6.8) by the functionsfij(R, R) andfij(R, R’) respectively, one obtains the value 
of the force per unit length acting upon a body S in the presence of both another 
long slender body 8’ and some walls W .  

51-2 
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7. Examples of long slender bodies in translation 
The results given in the previous section for the force acting on a long slender 

body will now be used to determine the resistance to translation of a long slender 
body for which the body centre-line is straight. Thus consider such a body and 
take a set of rectangular Cartesian axes (rl, r2,  r3) with origin 0 at the point on 
the centre-line of the body midway between the ends. Take the rl axis in the 

FIGURE 4. System of axcs for long slender body with straight centre-line. 

direction of the centre-line (see figure 4) and let the length of the body be 2a. 
Let b now be the cross-sectional radius of the body at the origin so that 

h(0) = 1. (7.1) 

Then using quantities made dimensionless with respect to a, so that K = b/a, it is 
seen that the integrals in (6.3) and (6.5) are to be taken over the range 

-1 < s < +l.  

Consider the body at rest in a fluid undergoing a uniform translation in the 
I-direction, so that one may take 

u = (1 ,0 ,0) ,  U” = 0. (7.2) 

The centre-line r = R(s) of the body is given by 

R,(s) = sSi, for - 1 6 s 6 + 1 .  

Hence dR,lds = Sil. 

Substitution of these expressions into (6.3) yields 

Ji = - ln c + 4 In (1 - sz),>. ( 7 . 5 )  

One may now evaluate the force per unit length 9 acting on the body from (6.2). 
Thus one may obtain 

9, = ( F I , O ,  O) ,  (7 .6 )  

By substituting this expression into (6.5) one may obtain the total force F on the 
body in dimensional form as F = ( q , o , o ) )  (7.8) 
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where 
1 1 1 

F, = 4 n - p a ~  [ mb + ~ (lna/b)2 (1 - In 2 - S/_:’ In ( q2) ds) + o ( ~ ] ]  . 
(7.9) 

This equation, which is identical to that obtained by Tillett (1970) and Batchelor 
(1970), may be written in the alternative form 

F -  4npa U PaU 
- In (2a/b) + C, + ’( ’ 

where Cl depends on the body shape and is given by 

c - --+-I 1 1 -+* ln(T)ds. 1-s2 

l -  2 4 -1 

(7.10) 

(7.11) 

As examples, consider the following cases : 
(i) A circular cylinder for which 

h ( s ) =  1 for -1 < s  < +I .  (7.12 a) 

This possesses a value of C, given by 

c, = - 4 +In 2 = - 0.80685. (7.12 b) 

(ii) A spheroid for which 

h(s) = (1-s2)6 for - 1  < s 6 + I .  (7.13a) 

This possesses a value of Cl given by 

c --I 
1 - 2’ 

(iii) A double cone for which 
(7.13 b) 

h(s) = l + s  for -1 < s 6 0, 

=1-s  for O < s < + l .  (7.14a) 

This possesses a value of Cl given by 

c, = -++In2 = +O-19315. (7.14b) 

It should be noted that the value of C, for case (ii) is greater than that for 
case (i) so that the resistance force F for a given value of a lb  is greater for the 
circular cylinder (case (i)) than for the spheroid (case (ii)), while similarly the 
resistance force for the spheroid is greater than that for the double cone (case 
(iii)). This is what one would expect. The result for the spheroid given above 
agrees with Oberbeck’s solution (see 3 2 ) ,  whilst the result for a circular cylinder 
agrees with that obtained by Broersma (see equation (2.9)). However the present 
method yields a value of C, analytically as being equal to - 4 + In 2 or - 0.80685 
whereas Broersma was able to obtain C, = -0.81 only after much numerical 
computation. [Burgers gave C, = - 0.72 for this case.] The present method gives 
a solution which is a true asymptotic expansion in the parameter bla and so gives 
an estimate of the error in the expression for the force F (see equation (7.10)). 
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Consider now the long slender body at  rest in a fluid undergoing a uniform 

u = (0) l , O ) ,  U” = 0. (7.15) 

Since (7.3) and (7.4) are still valid, the equation (6.3) for J yields for the present 

(7.16) case Ji = & i 2 { - h i ~ + ~ I n ( 1  -a2),). 

The equation (6.2) for the force 9 per unit length acting on the body gives 

translation in the direction of the r,  axis (see figure 4), so that now one has 

2F = (0 ,929 O ) ,  (7.17) 

The substitution of this expression into (6.5) yields the total force F and torque G 
on the body. These may be written in dimensional  form as 

F = (0, F2, O ) ,  (7.19) 

G = ((40, G3), (7.20) 

where 

C, and D being constants dependent upon body shape and given by 

1 1 +1 1-82 
C, = +-+-I 2 4 - 1  In (7) c ~ s ,  

D = -1:;sln (T) 1 -s2 ds .  

(7.21) 

(7.22) 

(7.23) 

(7.24) 

It should be noted that the value of C2 given here is just C, + 1, the quantity C, 
being involved in the formula for the force F for uniform translation of fluid 
parallel to body axis (see (7.10) and (7.11)). The values of D and G3 are zero for 
bodies like a circular cylinder and spheroid which possess fore-aft symmetry. 
As an example of a non-symmetric body consider the cone given by 

h(s) = 1-s for - 1  6 s < 1. (7.25) 

Substitution of this value of A(s) into (7.23) and (7.24) gives 

Q 2 -+I - 2 ,  D = - 2 ,  (7.26) 

so that the force and torque acting on the cone about the origin 0 is 

(7.27) 

so that the resultant force passes through a point P on the body centre-line at  a 
distance a/(2111(2a/b)) from the mid-point 0, the point P being nearer the base 
than the apex of the cone. 
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As an example of the resistance to motion of a body whose centre-line is not 
straight, consider a long slender body with its centre-line bent in an arc of a circle. 
Take rectangular Cartesian axes r,, r2,  r3 with the rl and r2 axes lying in the plane 
of the centre-line, the origin of co-ordinates being the centre of curvature of the 
body. Let the radius of curvature of the body centre-line be a and let b be the 
characteristic cross-sectional radius of the body. Then relative to polar axes ( r ,  O), 

the value of 8 being 0, and 8, a t  the ends of the body (see figure 5). Suppose such 
a body is a t  rest in a fluid undergoing a uniform translation in the direction of the 

q = Sil, u: = 0, (7.28) r,  axis. Then 

the body centre-line is r = 1, 0, G 8 G o,, 

FIGURE 5. Long slender body bent into an arc of a circle. 

and taking s = 0, one has 
Ri = ail cos 0 + Si2 sin 8, 

aRi/as = - Si, sin 8 + Si2 cos 8. 

Substituting these values into (6.3) for J ,  one obtains 

J = (4, J2, 01, 
J1 = ${2 In [tan $(O - @,) tan t (8 ,  - O)] - sin $(0 + 8,) sin 8, 

- sin i (0  + 0,) sin 8, - 41ne + 8I.n 2 + 2 sin28}, 
J2 = ${sin 8, cos +(8+ 8,) + sin 8, cos +(8 + 8,) - sin 28}. 

where 

(7.31) 

With this value of J, the formula (6.2) for the force per unit length acting on the 
body 9 has a component in the r1 direction given by 

(7.29) 

(7.30) 

(7.32) 
A B  

97,1277 = ~ + ~ 

l n ~  (lnK)2’ 
where 

A = s in28-2 ,  
B = &( sin2 8 - 2) { 2 In [tan & (8 - 8,) tan $( 8, - B) ]  - sin 8, sin Q( 0 + 8,) 

- sin8, sin $(0+ 8,) + 121n 2 + 2 + 2 sin2 8- 4I.n A} 
- $ sin 8 cos B{sin 0, cos &(O + 8,) + sin 8, cos ;( 0 + 8,) - sin 28) + sin2 8. 

(7.33) 
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Substitution of this result into (6.5) yields the rl component of the total force F 
acting on the body. Thus in dimensional form the resistance force F, is given by 

(7.34) 

where 

A* = t{3(0, - 0,) + cos (0, + 8,) sin (0, - O,)}, 
B* = -+~0~(8~+8,)sin(0,-0,)ln(tan~(0~-0,))-6 

jy &‘A-eo) In t dt 
1 + t 2  
__ 

+ + cos (8, + 0,) sin &(0, - 8,) -&sin #(0, - 0,) - 2 sin &(el - 6,) 

- $(l+ 91n 2) (0,- 8,) -&(I  + 31n 2) cos (0,+ 6,) sin (0, - 8,) 

(7.35) 

However, it should be noted that in addition to the resistance component of 
force given above there is, in general, a component of lift force in the r,-direction. 
For the case of a completely circular body (like a ring) for which 8, - 0, = 27r, the 

3 7 ~ ~ 1  U value of F, is given by 
F -  

- ln(Z/b)+K’ 
(7.36) 

where 1 = 27ra is the length of the body and K is a constant given by 

For a long thin spheroid bent in the form of a circle, one has 

(7.38) 

8 = 0, representing the ends of the body. This gives a value of the constant K as 

K = - In (&r) + $ + Si (47r) cos 20, (7.39) 

where Si ( z )  is the sine integral defined by 

(7.40) 

Thus K = 0.8817 + 0.0396 cos 28,. (7.41) 

Similarly for a long slender circular cylinder bent in a circle (i.e. a uniform circular 
ring), one has 

which gives K = -In(gn)+Q = +O*5749. (7.42) 

It should be noted that this result is independent of 8, as it must be by symmetry. 
However, for the spheroid bent into the form of a circle (see (7.36) and (7.41)), the 
resistance force F, is dependent upon 0,, i.e. the force Fl depends upon the body 
orientation relative to fluid motion. This particular case of a spheroid bent in the 
form of a circle was investigated by Tchen (1954) using Burgers’ method and 

h = 1 for 8, 6 8 6 8,+27r, 
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derived for the force & a formula identical to (7.36) but with K having for all O,, 
a value of - 2-09. This value, as one would expect, differs from the correct value 
given by (7.41). 

8. Uses and limitations of general theory 
The general theory given in $5 3 to 6 gives the force per unit length %acting 

on a long slender body when it is placed in some given undisturbed Stokes flow. 
The results, given by equations (6.2) and (6.3), may be used to solve a variety of 
interesting problems. However these problems will not be solved here but further 
discussion of them will be given in future papers. Thus one may consider the 
following problems : 

(i) The force and torque acting upon long slender rigid bodies placed in a given 
Stokes flow may be found by direct application of equations (6.2), (6.3) and (6.5). 
Examples for bodies with straight centre-lines and for bodies with curved centre- 
lines were given in $7.  One may also make use of the linearity of the creeping 
motion equations to show, for example, that the total force F acting upon a 
circular cylinder of finite length at  rest in a uniform fluid flow of velocity U is 

where, relative to the r l ,  r2, r3 axes given in figure 4, Aij is a tensor given by 
given by Fi = paAijUj, (8.1) 

Aij = 0 otherwise. 

(ii) One may use the general theory to find the disturbance produced by a long 
slender body in shear flow. This is necessary if one wishes to derive the equivalent 
viscosity and rheological behaviour of a suspension of rigid rod-like particles for 
the case in which the effects of particle collisions are neglected. 

(iii) The equations (6.2) and (6.3) may be used to derive the force per unit 
length on a long slender body for the case in which the body is flexible. One may 
therefore determine how such a body with known elastic properties would bend 
if it were placed in a given Stokes flow. For example one could derive the condi- 
tions for buckling of a slightly flexible body placed in shear flow. Such a buckling 
was observed experimentally by Forgacs & Mason (1959a, b) .  

(iv) From equations (6.2) and (6.8) the motion of two rod-like particles under 
their mutual interaction may be determined when (a )  they are sedimenting in a 
fluid a t  rest or ( b )  they interact with one another in a fluid undergoing shear flow. 
This latter case is useful for the consideration of particle interactions in a suspen- 
sion of rod-like particles undergoing shear flow. Experimental observations of the 
behaviour of particles in such a suspension have been made by Anczurowski & 
Mason (1967a, b )  and Anczurowski, Cox & Mason (1967). 

(v) The equations (6.2) and (6.9) may be used to determine the behaviour of a 
long slender body sedimenting near a plane vertical solid wall, the Greens 
function fij(R, R) being readily obtainable for this case. 
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(vi) At zero Reynolds number, the orientation of a rigid rod-like particle in 
shear flow undergoes a periodic motion, the motion itself being dependent upon 
a quantity C called the orbit constant which is determined by the initial orienta- 
tion of the particle (see Jeffery 1922). However if the Reynolds number (Re) is 
small but non-zero so that fluid inertia has a small but not a negligible effect, then 
one would expect the particle motion to be not quite periodic, there being a slow 
change in the value of the orbit constant C. This drift in orbit constant may be 
determined by modifying the general theory of $9 3 to 6 and by making now a 
double expansion in terms of the two parameters Re and K .  

The general result given by equations (6.2) and (6.3) for the force per unit 
length acting on a long slender body gives a value of zero for the case in which 
(U - U*) is identically zero at  all points on the body centre-line. For such a case 
it is therefore necessary to take the expansion to a higher order in K .  However, 
this is a very important case and will be discussed in a future paper since in order 
to determine the equivalent axis ratio re of a long slender body for its motion in 
shear flow (see Jeffery 1922), it  is necessary to consider a long slender body at  
rest with axis in the r l  direction (see figure 4) placed in a shear flow given by 

u = P Z ,  0, O ) ,  

and since U* = 0, one has for this case, 

u - U "  = 0 

at all points on the centre-line r2 = r3 = 0. 
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